

Aide-mémoire

IUT • Licence • Master

MÉCANIQUE DES STRUCTURES

Résistance des matériaux

Arnaud Delaplace Fabrice Gatuingt Frédéric Ragueneau

DUNOD

Table des matières

Cha	pitre 1	THÉORIE DES POUTRES	
1.1	Princip	pes de base en résistance des matériaux	
	1.1.1	La notion de contrainte	
	1.1.2	La déformation	
	1.1.3	La loi de comportement	
	1.1.4	Définitions et hypothèses en mécanique des structures	
	1.1.5	Équations d'équilibre d'un élément de poutre	9
1.2	Étude	s des poutres sous diverses sollicitations	10
	1.2.1	Lois de comportement généralisées pour les poutres	10
	1.2.2	Poutre en flexion simple	15
	1.2.3	Poutre en flexion déviée	16
	1.2.4	Poutre en flexion composée	16
Chap	oitre 2	CARACTÉRISTIQUES DES SECTIONS	18
2.1			
2.1	Préam		18
2.2		abule	
-	Préam	abule	18 19
-	Préam Défini	nbule	19
2.2	Préam Défini 2.2.1	abule tions Surface	19
2.2	Préam Défini 2.2.1 2.2.2	abule tions Surface Centre de gravité	19 19
2.2	Préam Défini 2.2.1 2.2.2 2.2.3	abule tions Surface Centre de gravité Moment statique	19 19 19
2.2	Préam Défini 2.2.1 2.2.2 2.2.3 2.2.4	abule tions Surface Centre de gravité Moment statique Moment d'inertie	19 19 19 19
2.2	Préam Défini 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	abule tions Surface Centre de gravité Moment statique Moment d'inertie Produit d'inertie	19 19 19 19 20 20
2.2	Préam Défini 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	abule tions Surface Centre de gravité Moment statique Moment d'inertie Produit d'inertie Moment polaire	19 19 19 19 20 20 20

2.3	Théorè	mes et propriétés	22
	2.3.1	Théorème de Huygens	22
	2.3.2	Changement de repère	22
	2.3.3	Décomposition d'une surface	23
2.4	Caracte	éristiques des principales sections	25
2.5	Exempl	e : caractéristiques d'une section en T	27
Cha	pitre 3	THÉORÈMES GÉNÉRAUX-MÉTHODES ÉNERGÉTIQUES	30
3.1	Principe	e des travaux virtuels – PTV	30
	3.1.1	Champ de déplacement virtuel	31
	3.1.2	Définition du travail des forces dans le champ de déplacement virtuel	31
3.2	Égalité	de Clapeyron	32
3.3	-	me de réciprocité de Maxwell-Betti	33
3.4	Théorè	me de Castigliano	33
3.5	Théorè	me de Ménabréa	34
3.6	Théorè	me de Müller-Breslau : Formule de Mohr	34
3.7	Linnes	d'influence	38
3.1	3.7.1	Effet d'un ensemble de charges	40
	3.7.2	Lignes d'influence des déformations	40
Cha	nitre 4	SYSTÈMES ISOSTATIQUES	41
4.1	Définit		41
	4.1.1	Systèmes isostatiques	41
	4.1.2	Efforts et conditions de liaisons	42
	4.1.3	Exemple	42
4.2	Poutre	sur deux appuis	45
	4.2.1	Cas d'une charge concentrée	45
	4.2.2	Cas d'un convoi de charges ponctuelles : théorème de Barré	46
	4.2.3	Cas d'une charge uniformément répartie	47
	4.2.4	Cas d'une charge répartie partielle	48
	4.2.5	Cas d'une charge répartie partielle proche d'un appui	49
	4.2.6	Cas d'une charge triangulaire	50
	4.2.7	Cas d'une charge triangulaire monotone	51
	4.2.8	Cas d'une charge triangulaire anti symétrique	52
	4.2.9	Cas d'une charge trapézoïdale symétrique	53
	4.2.10	Cas d'une charge parabolique	54

	4.2.11	Cas d'un couple en un point quelconque	55
		Cas d'un couple à une extrémité	56
	4.2.13	Cas d'un couple uniformément réparti	57
4.3	Poutre	console	58
	4.3.1	Cas d'une charge concentrée	58
	4.3.2	Cas d'une charge uniformément répartie	59
	4.3.3	Cas d'une charge triangulaire croissante	59
	4.3.4	Cas d'une charge triangulaire décroissante	60
	4.3.5	Cas d'un couple	61
4.4	Arc pa	rabolique isostatique	62
	4.4.1	Cas d'une charge uniformément répartie	62
	4.4.2	Cas d'une charge ponctuelle horizontale	63
	4.4.3	Cas d'une charge ponctuelle verticale	64
Cha	pitre 5	SYSTÈMES HYPERSTATIQUES	65
5.1	Génér	alités	65
	5.1.1	Degré d'hyperstaticité H	65
	5.1.2	Méthode des forces	68
	5.1.3	Méthode des déplacements	75
5.2	Poutre	e droite à une travée	85
	5.2.1	Encastrement élastique aux extrémités	85
	5.2.2	Formulaire d'une poutre simplement appuyée d'un côté et encastrée	
		de l'autre	87
	5.2.3	Formulaire d'une poutre bi-encastrée	91
	5.2.4	Formulaire d'une poutre console	94
5.3	Poutre	continue	96
	5.3.1	Notations et définitions	96
	5.3.2	Poutre isostatique associée	96
	5.3.3	Formule des trois moments	97
	5.3.4	Expression des sollicitations et actions de liaison	98
	5.3.5	Formulaire des rotations usuelles	99
	5.3.6	Formulaire de la poutre continue à 2 travées égales	101
	5.3.7	Formulaire de la poutre continue à 3 travées égales	103
	5.3.8	Formulaire de la poutre continue à 4 travées égales	105
	5.3.9	Formulaire de la poutre continue à 5 travées égales	106
	5.3.10	Poutre continue sur appuis élastiques ponctuels	107

5.4	Systèr	nes de poutres croisées	10			
	5.4.1	Principe	10			
	5.4.2	Cas particulier des poutres de même inertie	10			
	5.4.3	Cas particulier des poutres infiniment rigides dans une direction	11			
5.5	Poutre	e sur appui élastique continu	11			
	5.5.1	Définition et paramètres	110			
	5.5.2	Formulaire de la poutre infinie	112			
	5.5.3	Formulaire de la poutre semi-infinie	113			
	5.5.4	Formulaire de la poutre de longueur finie	116			
5.6	Portiq	ue	118			
	5.6.1	Portique à un seul montant et à deux extrémités articulées	115			
	5.6.2	Portique à un seul montant et à deux extrémités encastrées	115			
	5.6.3	Portique à un seul montant et à une extrémité encastrée et l'autre				
		articulée	120			
	5.6.4	Portique à deux montants articulés	122			
	5.6.5	Portique à deux montants encastrés	123			
5.7	Arcs h	yperstatiques	125			
	5.7.1	Arc circulaire à deux articulations sans tirant	125			
	5.7.2	Arc parabolique à deux articulations sans tirant	127			
Chap	oitre 6	PLAQUES ET COQUES	129			
6.1	Plaque	25	129			
	6.1.1	Formules générales	130		Elle Steel	
	6.1.2	Méthode de résolution pour les plaques rectangulaires	131			
	6.1.3	Plaques rectangulaires	132			
	6.1.4	Plaques circulaires	134			
	6.1.5	Plaques annulaires	140			
6.2	Coque	25	146			
	6.2.1	Cylindriques verticaux	146			
	6.2.2	Cylindres horizontaux remplis par un liquide	148			
	6.2.3	Coupole sphérique fermée	149			
	6.2.4	Coupole sphérique ouverte	151		-	
	6.2.5	Coque sphérique	153	Ow	pite9 = CA	COLUMN TO SERVICE
Chap	itre 7	FORMULATION DES ÉLÉMENTS FINIS	154	9.1	restation.	
7.1	Introd	uction	154	92	Notice Section	

des matières	Table	e des matières	vii
108	7.2	Principe des éléments finis	154
108	7.3	Étapes de la résolution d'un problème	156
109	7.4	Application à l'étude d'une poutre sollicitée en flexion	158
110		7.4.1 Description du problème	158
110		7.4.2 Construction de la matrice de raideur locale	158
110		7.4.3 Implantation et résolution dans Matlab	163
112	7.5	Éléments isoparamétriques	167
113 116	7.6	Fonctions de forme des éléments isoparamétriques courants	168
		7.6.1 Élément barre à deux nœuds	168
118 119		7.6.2 Élément barre à trois nœuds	168
119		7.6.3 Élément triangulaire à trois nœuds	169
119		7.6.4 Élément triangulaire à six nœuds	169
utre 120		7.6.5 Élément quadrangulaire à quatre nœuds	170
122		7.6.6 Élément quadrangulaire à huit nœuds	170
123		7.6.7 Élément quadrangulaire à neuf nœuds	171
125			
125	Chap	oitre 8 • INSTABILITÉ DES STRUCTURES	172
127	8.1	Instabilité de poutres	172
		8.1.1 Poutre d'Euler	172
129		8.1.2 Solutions générales des poutres comprimées	174
129		8.1.3 Solutions particulières pour des poutres de section constante	174
130		8.1.4 Prise en compte d'un défaut initial	177
131	8.2	Calcul des moments dans une poutre comprimée fléchie	178
132	8.3	Déversement latéral de poutres	179
134		8.3.1 Déversement latéral de poutres à section rectangulaire	179
140		8.3.2 Déversement latéral de poutres à section en l	180
146	8.4	Instabilité et voilement de plaques	181
146	8.5	Flambement de structures non planes initialement	184
148		8.5.1 Flambement d'arc et d'anneaux	184
149		8.5.2 Flambement de tubes minces	184
151 153			
155	Chap	oitre 9 • CALCUL NON-LINÉAIRE, ANALYSE LIMITE, PLASTICITÉ	186
154	9.1	Introduction	186
154	9.2	Modèles de comportement des matériaux	187

9.3	Plastif	ication en flexion : notion de moment plastique et rotule	
	plastic	que	18
	9.3.1	Hypothèses	18
	9.3.2	Section symétrique	18
9.4	Analys	se limite d'un système de poutres	15
	9.4.1	Enjeux	15
	9.4.2	Théorème statique	15
	9.4.3	Théorème cinématique	15
Char	oitre 10	DYNAMIQUE ET VIBRATIONS	19
		ne à 1 degré de liberté	10
10.1	-	Équation du mouvement	19
		Le régime libre	19
		Le régime forcé sinusoïdal	19
		Régime permanent sous une charge périodique quelconque	20
		Réponse à une charge arbitraire	20
		Réponse à des chargements impulsionnels simples	20
10.2		ne à N degrés de liberté	20
		Équations du mouvement	20
		Signification des modes propres et fréquences propres	20
		Détermination des fréquences propres de vibration	20
		Détermination des modes propres de vibration	20 montrones de trese en microses
		Propriété d'orthogonalité des modes	20 les chapitres surveit l'inches
		Normalisation des vecteurs modes de vibration	20 mement appelee Resident
	10.2.7	Équations modales du mouvement - Superposition des modes	20
10.3		on des systèmes continus	21
		Vibration axiale des barres	21 1.1 PRINCIPES DE IM
	10.3.2	Vibration transversale des poutres	21 MATÉRIAUX
	10.3.3	Détermination du mode fondamental de vibration : méthode de	WATERWAY.
		Rayleigh	21
	10.3.4	Modes propres de vibration des poutres	21 1.1.1 La notion de man
	10.3.5	Modes propres de vibration des plaques	21 Si un solide est en equilibria
lu al			couples et de liaisons, ur um
Inde	X		21 marhématique permetura
			Pour définir la notion de manuel
			coupures virtuelles du saine

SCIENCES SUP

Série Aide-mémoire

Arnaud Delaplace Fabrice Gatuingt Frédéric Ragueneau

MÉCANIQUE DES STRUCTURES

Cet aide-mémoire s'adresse aux étudiants en Licence et Master professionnels (génie des matériaux, génie civil...) ou en IUT de génie mécanique.

Il offre une approche moderne de la mécanique des structures en présentant les méthodes les plus récentes pour la résolution des systèmes mécaniques simples ou complexes, dont les dimensions vont du micromètre à quelques dizaines de mètres.

Au cours des chapitres de nombreux tableaux synthétisent et récapitulent les caractéristiques des principaux cas en résistance des matériaux.

ARNAUD DELAPLACE est chargé de recherche au CNRS, agrégé de Génie Civil.

FABRICE GATUINGT

est maître de conférences à l'ENS Cachan, agrégé de Génie Civil.

FRÉDÉRIC RAGUENEAU

est maître de conférences à l'ENS Cachan.

Tous trois sont chercheurs au Laboratoire de Mécanique et Technologie – LMT Cachan.

6665145

ISBN 978-2-10-052111-1

www.dunod.com

PHYSIOU

CMIMI

COUNTRY OF LUNCONIES

INTEGRALATION IS

SCIENCES DE LA VIE

SCIENCES DE LA TERRE

