

Didier POL

Travaux pratiques de

Biologie des levures

ate mais

nt de les ganismes Coli des

vent être oorder de eptionnel

résentées ssi, si l'on ographie.

SOMMAIRE

INTRODUCTION	20
I • COMMENT SE PROCURER DES LEVURES	21
1-1 Isoler des levures de l'environnement **	21
1. A partir de végétaux	21
2. A partir de drosophiles	22
3. A partir de fromages	22
1-2 Levures d'origine industrielle	22
Levures lyophylisées	22
2. Boulangeries	23
3. Pharmacies	23
1-3 Fournisseurs spécialisés	23
I • UNE NÉCESSITÉ : LE TRAVAIL EN ASEPSIE	25
2-1 Règles générales	25
2-2 Stérilisation des milieux et du matériel	
1. Autocuiseur (« Cocotte-minute »)	
2. Four à micro-ondes	
Matériels à usage unique	27
III • UNE APPROCHE ÉLÉMENTAIRE POUR OBTENIR DES COLONIES *	28
IV • REPIQUAGE ET ISOLEMENT DE COLONIES	29
4-1 Repiquage par stries d'épuisement **	29
4-2 Isolement par dilutions en série et étalement **	31
4-3 Technique des répliques	34
V • MISE EN CULTURE DANS UN MILIEU LIQUIDE ET MESURE DE CROISSANCE PAR TURBIDIMÉTRIE **	35
VI • CONSERVATION DES SOUCHES	38
6-1 Sur milieu solide	38
6-2 En milieu liquide	38
6-3 Au congélateur	38
6-4 Envoyer des levures par la poste	38

THE RESERVE AND PERSONS NAMED IN

2 •	2 • OBSERVER LES LEVURES AU MICROSCOPE. Techniques cytologiques, colorations, numération		
	INTRODUCTION	42	
	I • ÉTUDIER LES CELLULES AU MICROSCOPE OPTIQUE	43	
	1-1 Observation vitale sans coloration *	43	
	1. A partir de colonies sur milieu solide		
	A partir d'une culture en milieu liquide	43	
	A partir de levure de boulangerie	43	
	1-2 Observations vitales avec coloration *	44	
	1. Rouge neutre	44	
	2. Vert Janus	44	
	1-3 Colorations de frottis fixés *	45	
	1. Lugol (eau iodée)		
	2. Bleu de méthylène	46	
	3. Noir Soudan	47	
	4. Bleu de Nil	47	
	II • MESURES DIVERSES SUR LES CELLULES **	48	
	2-1 Dénombrement des cellules avec une lame à numération	48	
	2-2 Dimensions des cellules	49	
	III • OBTENIR DES PROTOPLASTES **	51	
	IV • CYCLE BIOLOGIQUE DES LEVURES	53	
	4-1 Reproduction asexuée	53	
	1. Bourgeonnement *	53	
	2. Fission *	55	
	4-2 Reproduction sexuée **	55	
	1. Fécondation	55	
	2. Sporulation	57	
	3. Coloration des spores sur frottis *	57	
	V • ÉTUDIER LES LEVURES AU MICROSCOPE ÉLECTRONIQUE	57	

41	
42	
43	
43	
43	
43	
43	
44	
44	
44	
45	
46	
46	
47	
47	- 1
48	- 1
48	
49	
51	
51	
53	
53	
53	
55	
55	
55	
57	

..... 57 57

EXPÉRIMENTER SUR LE MÉTABOLISME ÉNERGÉTIQUE. Respiration, fermentation, contrôle métabolique	
INTRODUCTION	61
I • MESURES SUR LA RESPIRATION	63
1-1 Précautions et informations	
1. Lavage des levures	
2. Effet Crabtree	
3. Mutants RD	63
4. Efficacité des différents sucres	64
1-2 Mesures de l'intensité et du quotient respiratoires avec un microrespiron Intensité respiratoire Quotient respiratoire	64
1-3 Mesures avec une électrode de Clark **	66
Effet de la concentration en substrat	67
Effet de différents substrats	68
II • MESURES SUR LA FERMENTATION ALCOOLIQUE	69
2-1 Précautions et informations	69
Lavage des levures	69
Démarrage d'une fermentation	
3. Précautions	69
2-2 Manipulation élémentaire *	70
2-3 Comparaison de l'efficacité de différents sucres avec batterie de tubes d	à essai * 71
2-4 Mesure de l'intensité de fermentation et caractérisation des produits for Caractérisation du gaz produit Mise en évidence de l'éthanol	72
2-5 Mesure indirecte du volume de gaz dégagé et effet de l'addition de phosphate *	73
2-6 Microrespiromètre. Influence de la température **	
2-7 Expérimentation assistée par ordinateur **	74
Cinétique de la fermentation (capteur de produits volatils)	74
Utilisation d'un pH mètre	76
III • SUBSTRATS ET MÉTABOLISME : MÉTHODES BIOCHIMIQUES	78
3-1 Détection de la fermentation d'un sucre par un indicateur de pH	78
Fermentation du maltose	
2. Fermentation du galactose	78
3-2 Mise en évidence de la respiration par le triphényl tétrazolium **	79
3-3 Auxanogrammes	
1. Méthode des disques *	
2. Galeries de détermination *	

Scennaire

II - BICHERTHODAM

N . PHODOGETHE

ANNEE SHOW STANK

№ Соме́меють типи

II · MUTATONE SEDIMENT

E · ACTONIZIONE

N-NEADER

V - NOPLETON THE

12 Miles married

21 Warm warm

3-1 Security 13-2 Marganian 13-2 Mar

42 September 1

5-1 Service and Service Service and Servic

54 Transmission

5 - EXPLORER LA GENERAL Un organisme moderne

NECOUCION

37 Notice "

E Name and

3	8-4 Suivi de la consommation de glucose en aérobiose et en anaérobiose avec bandelettes enzymatiques et lecteur *	82
3	3-5 Transformations métaboliques des sucres : chromatographie sur couche mince **	83
IV • CONT	TRÔLE MÉTABOLIQUE	85
4	4-1 Mise en évidence de l'effet Crabtree ***	85
4	1-2 Mise en évidence de l'effet Pasteur (glucose oxydase-peroxydase) **	87
	4-3 Répression catabolique : manipulation élémentaire *	
4	4-4 Répression catabolique : métabolisme du galactose **	89
4	4-5 Répression et induction du métabolisme du maltose **	91
/ • CYTO	CHROMES : SPECTRES D'ABSORPTION DES CYTOCHROMES OXYDÉS ET RÉDUITS *	* 92
VI • CONT	TENU EN ATP DE CELLULES CULTIVÉES EN AÉROBIOSE ET EN ANAÉROBIOSE ***.	93
ANNEXE 1	: quelques données sur le métabolisme de S. cerevisiae	95
ANNEXE 2	: quelques mécanismes de contrôle métabolique dans la glycolyse	95
	TION	
	INATION DU RÉPERTOIRE ENZYMATIQUE ET APPLICATIONS	
	I-1 Enzymes endogènes et enzymes exportées *	
	1-2 Induction enzymatique *	
	1. Maltase	
	2. Phosphatases	
II • ENZYM	AES EXPORTÉES	103
2	2-1 Saccharase : mise en évidence d'une protéine exportée *	103
2	2-2 Saccharase : cinétique enzymatique *	104
	Préparation de l'enzyme	104
	Mesures	
2	2-3 Catalase	
	1. Manipulation élémentaire : mise en évidence de la catalase *	
	Cinétique de la catalase avec une méthode simple *	
	3. Cinétique de la catalase avec une électrode de Clark **	
	4. Cinétique de la catalase par colorimétrie **	
2	2-4 Phosphatase acide	
	1. Mise en évidence de la sécrétion de phosphatase acide *	
	Inhibition de la phosphatase acide par les phosphates **	110
	2-5 Mise en évidence d'une amylase *	111

..... 82

..... 83

..... 85

..... 85

..... 87

.....88

..... 93

..... 95

.....95

..... 97

......989999101

..... 103 103 104 104

..... 105 105 106 107 108 109 109 110

III • ENZ	ymes intracellulaires
	3-1 Maltase *
	3-2 Succinodéshydrogénase : souche sauvage et mutants petite**
	3-3 Les enzymes de la fermentation : expérience de Büchner ** (fermentation par un extrait acellulaire)
IV • PHÉR	ROMONES SEXUELLES
	4-1 Mise en évidence de la sécrétion d'une phéromone sur milieu solide *
	4-2 Action d'une phéromone in vitro **
ANNEXE	: quelques protéines de S. cerevisiae en rapport avec l'utillisation des sucres
	ER LA GÉNÉTIQUE DES LEVURES. nisme modèle en génétique
INTRODUC	CTION
I. COMPI	ÉMENTATION FONCTIONNELLE
	1-1 Test de complémentation fonctionnelle dominance et récessivité **
	1-2 Utiliser la technique des répliques pour déterminer le type sexuel ***
II • MUTA	TIONS SPONTANÉES
	2-1 Mise en évidence de mutants « petite » par la morphologie des colonies *
	2-2 Mise en évidence de mutants « petite » par le triphényl tétrazolium **
III • ACTIO	ON DU RAYONNEMENT ULTRAVIOLET SUR L'ADN
	3-1 Détermination de la DL ₅₀ ***
	3-2 Mutagenèse par les UV ***
	3-3 Détermination de la nature des mutations obtenues ***
IV . INTER	ACTIONS ENTRE EXPRESSION DES GÊNES ET ENVIRONNEMENT
	4-1 Nécessité de l'aérobiose pour la synthèse du pigment **
	4-2 Répression de la voie de biosynthèse en présence d'adénine
V • MANI	PULATIONS SUR L'ADN
	5-1 Extraction de l'ADN total ***
	5-2 Isolement d'ADN plasmidique ***
	Préparation des gels
	5-3 Électrophorèse de l'ADN sur gel d'agarose *** Préparation des gels Coloration des gels 5-4 Transformation ***

-

THE RESERVE

PERSONAL PROPERTY.

PRÉPARATION DES MILIEUX, RÉACTIFS ET SOLUTIONS DIVERSES. Formulaire	14
I MILIEUX DE CULTURE	14
1-1 Préparation des boîtes de culture	14
1-2 Milieux complets	142
1-3 Milieu minimum	142
1-4 Milieu de sporulation	142
1-5 Milieu sélectif pour la respiration	142
1-6 Milieu pour l'étude du contrôle métabolique	143
II • SUPPLÉMENTS	14
2-1 Antibiotiques	14
2-2 Autres suppléments	14
2-3 Préparation des rondelles de papier pour auxanogrammes	14
1. Sucres	
2. Adénine	145
III • COLORANTS CYTOLOGIQUES	140
3-1 Bleu de méthylène	140
3-2 Bleu de Nil	140
3-3 Lugol	140
3-4 Noir Soudan	140
3-5 Rouge neutre pour coloration vitale	140
3-6 Safranine	140
3-7 Vert Janus pour coloration vitale	140
3-8 Vert malachite	
IV • SOLUTIONS ET RÉACTIFS DIVERS	147
4-1 Indicateurs de pH pour révélation de la fermentation sur milieu solide	147
Indicateur au pourpre de bromocrésol	147
Indicateur au bleu de bromothymol	147
4-2 Réactif des alcools	147
4-3 Solution d'extraction pour isolement de plasmide	147
4-4 Solution de révélation pour chromatographie des sucres	147
4-5 Solutions pour transformation	147
1. Solutions mères	
2. Solutions de travail	
4-6 Solutions pour l'obtention de protoplastes	
1. Prétraitement	
Solution pour protoplastes	14

DGIE DES LEVURES
E(1 × 1)
141
141
141
142
142
142
142
143
144
144
144
144
144
145
146
146
146
146
146
146
146
146
146
147
147
147
147
147
147
147

......147148148149

	5-1 Tampon phosphate	150
	5-2 Tampon acide acétique-acétate de sodium	150
	5-4 Tampon tris-EDTA pour mise en solution de l'ADN	
FOURNIS	SEURS	153
BIBLIOGI	RAPHIE	155
INDEX		157

L'enseignement de la biologie depuis l'école élémentaire jusqu'à l'université fait une large place aux activités pratiques comme le soulignent les textes officiels, et les enseignants sont attachés à cette dimension pratique car elle permet d'éveiller et de stimuler l'intérêt des jeunes tout en donnant une image concrète de la science.

A cet égard, les levures constituent un organisme de choix aux avantages multiples : peu onéreuses, sans danger, faciles à cultiver et à conserver, elles se prêtent à une multitude d'activités pratiques en relation avec les principaux problèmes biologiques. En outre, les levures sont utilisées depuis des milliers d'années comme auxiliaires dans l'alimentation humaine et c'est par leurs travaux sur ces organismes que Büchner et Pasteur ont fondé respectivement la biochimie et la microbiologie modernes. Elles sont aussi de plus en plus utilisées dans le domaine biomédical. Enfin, le séquençage complet du génome de la levure Saccharomyces cerevisiae ayant été terminé en avril 1996, ce sont désormais les organismes eucaryotes les mieux connus.

Cet ouvrage présente de façon détaillée des activités pratiques permettant d'aborder les notions fondamentales de la biologie à tous les niveaux d'enseignement. Il devrait donc constituer une aide précieuse pour toutes les personnes chargées de les mettre en œuvre : enseignants et candidats aux concours de recrutement de l'enseignement, personnels de laboratoire, étudiants, animateurs de clubs scientifiques.

Illustration de couverture : Principaux contaminants microbiens de la bière et du moût de malt, Pasteur, *Etudes sur la bière*, 1876.

